Showing posts with label plant. Show all posts
Showing posts with label plant. Show all posts
0
Download / swf / 169 Kb

This animation will show you about how the water can enter from the root. The process of water entrance in swf format.
0
Download / swf / 93 Kb

This file will show you about stobilus animation in plant
A strobilus (plural strobili) is a structure present on many land plant species consisting of sporangia-bearing structures densely aggregated along a stem. Strobili are often called cones, but many botanists restrict the use of the term cone to the woody seed strobili of conifers. Strobili are characterized by a central axis (anatomically a stem) surrounded by spirally arranged or decussate structures that may be modified leaves or modified stems.
0
Download / swf / 514 Kb

In this file you can learn about leaf structure with swf format

The most important function of a leaf is photosynthesis: the production of energy from sunlight, carbon dioxide and water. The shape of the leaf helps to maximize the sunlight receiving area and the veins in the leaf make it easier to move the raw materials and products of photosynthesis in and out of the leaf.
0
Download / swf / 169 Kb

Most plants secure the water and minerals they need from their roots.

The path taken is: soil -> roots -> stems -> leaves

The minerals (e.g., K+, Ca2+) travel dissolved in the water (often accompanied by various organic molecules supplied by root cells).

Less than 1% of the water reaching the leaves is used in photosynthesis and plant growth. Most of it is lost in transpiration.

Soil water enters the root through its epidermis. It appears that water then travels in both

    * the cytoplasm of root cells — called the symplast — that is, it crosses the plasma membrane and then passes from cell to cell through plasmodesmata.
    * in the nonliving parts of the root — called the apoplast — that is, in the spaces between the cells and in the cells walls themselves. This water has not crossed a plasma membrane.

However, the inner boundary of the cortex, the endodermis, is impervious to water because of a band of suberized matrix called the casparian strip. Therefore, to enter the stele, apoplastic water must enter the symplasm of the endodermal cells. From here it can pass by plasmodesmata into the cells of the stele.

Once inside the stele, water is again free to move between cells as well as through them. In young roots, water enters directly into the xylem vessels and/or tracheids [link to views of the structure of vessels and tracheids]. These are nonliving conduits so are part of the apoplast.

Once in the xylem, water with the minerals that have been deposited in it (as well as occasional organic molecules supplied by the root tissue) move up in the vessels and tracheids.

At any level, the water can leave the xylem and pass laterally to supply the needs of other tissues.

At the leaves, the xylem passes into the petiole and then into the veins of the leaf. Water leaves the finest veins and enters the cells of the spongy and palisade layers. Here some of the water may be used in metabolism, but most is lost in transpiration.
0

Download / swf / 201 Kb

The Flower
The flower is the reproductive unit of some plants (angiosperms). Parts of the flower include petals, sepals, one or more carpels (the female reproductive organs), and stamens (the male reproductive organs).

The Female Reproductive Organs:
The pistil is the collective term for the carpel(s). Each carpel includes an ovary (where the ovules are produced; ovules are the female reproductive cells, the eggs), a style (a tube on top of the ovary), and a stigma (which receives the pollen during fertilization).

The Male Reproductive Organs:
Stamens are the male reproductive parts of flowers. A stamen consists of an anther (which produces pollen) and a filament. The pollen consists of the male reproductive cells; they fertilize ovules.

Fertilization:
Pollen must fertilize an ovule to produce a viable seed. This process is called pollination, and is often aided by animals like bees, which fly from flower to flower collecting sweet nectar. As they visit flowers, they spread pollen around, depositing it on some stigmas. After a male's pollen grains have landed on the stigma during fertilization, pollen tubes develop within the style, burrowing down to the ovary, where the sperm fertilizes an ovum (an egg cell), in the ovule. After fertilization, the ovule develops into a seed in the ovary.

Types of Flowers:
Some flowers (called perfect flowers) have both male and female reproductive organs; some flowers (called imperfect flowers) have only male reproductive organs or only female reproductive organs. Some plants have both male and female flowers, while other have males on one plant and females on another. Complete flowers have stamens, a pistil, petals, and sepals. Incomplete flowers lack one of these parts.
0

Download / swf / 961 Kb

Organisms need energy to survive. Some organisms are capable of absorbing energy from sunlight and using it to produce sugar and other organic compounds such as lipids and proteins. The sugars are then used to provide energy for the organism. This process, called photosynthesis, is used by plants and some protists, bacteria, and blue-green algae.

Photosynthesis Equation

In photosynthesis, solar energy is converted to chemical energy. The chemical energy is stored in the form of glucose (sugar). Carbon dioxide, water, and sunlight are used to produce glucose, oxygen, and water. The chemical equation for this process is:

6CO2 + 12H2O + light → C6H12O6 + 6O2 + 6H2O

6 molecules of carbon dioxide (6CO2) and 12 molecules of water (12H2O) are consumed in the process, while glucose (C6H12O6), six molecules of oxygen (6O2), and six molecules of water (6H2O) are produced.

This equation may be simplified as: 6CO2 + 6H2O + light → C6H12O6 + 6O2.
Photosynthesis in Plants

In plants, photosynthesis occurs mainly within the leaves. Since photosynthesis requires carbon dioxide, water, and sunlight, all of these substances must be obtained by or transported to the leaves. Carbon dioxide is obtained through tiny pores in plant leaves called stomata. Oxygen is also released through the stomata. Water is obtained by the plant through the roots and delivered to the leaves through vascular plant tissue systems. Sunlight is absorbed by chlorophyll, a green pigment located in plant cell structures called chloroplasts. Chloroplasts are the sites of photosynthesis.
0

Download / swf / 90 Kb

An electron transport chain (ETC) couples electron transfer between an electron donor (such as NADH) and an electron acceptor (such as O2) with the transfer of H+ ions (protons) across a membrane. The resulting electrochemical proton gradient is used to generate chemical energy in the form of adenosine triphosphate (ATP). Electron transport chains are the cellular mechanisms used for extracting energy from sunlight in photosynthesis and also from redox reactions, such as the oxidation of sugars (respiration).

In chloroplasts, light drives the conversion of water to oxygen and NADP+ to NADPH with transfer of H+ ions across chloroplast membranes. In mitochondria, it is the conversion of oxygen to water, NADH to NAD+ and succinate to fumarate that generates a proton. Electron transport chains are major sites of premature electron leakage to oxygen, generating superoxide and potentially resulting in increased oxidative stress.
0

Download / swf / Kb

Chlorophyll (also chlorophyl) is a green pigment found in almost all plants, algae, and cyanobacteria. Its name is derived from the Greek words χλωρος, chloros ("green") and φύλλον, phyllon ("leaf"). Chlorophyll is an extremely important biomolecule, critical in photosynthesis, which allows plants to obtain energy from light. Chlorophyll absorbs light most strongly in the blue portion of the electromagnetic spectrum, followed by the red portion. However, it is a poor absorber of green and near-green portions of the spectrum; hence the green color of chlorophyll-containing tissues. Chlorophyll was first isolated by Joseph Bienaimé Caventou and Pierre Joseph Pelletier in 1817.
Chlorophyll is vital for photosynthesis, which allows plants to obtain energy from light.

Chlorophyll molecules are specifically arranged in and around photosystems that are embedded in the thylakoid membranes of chloroplasts. In these complexes, chlorophyll serves two primary functions. The function of the vast majority of chlorophyll (up to several hundred molecules per photosystem) is to absorb light and transfer that light energy by resonance energy transfer to a specific chlorophyll pair in the reaction center of the photosystems
0

Download / swf / 115

Photosynthesis is the process of converting light energy to chemical energy and storing it in the bonds of sugar. This process occurs in plants and some algae (Kingdom Protista). Plants need only light energy, CO2, and H2O to make sugar. The process of photosynthesis takes place in the chloroplasts, specifically using chlorophyll, the green pigment involved in photosynthesis.

[Leaf Cross-Section] Photosynthesis takes place primarily in plant leaves, and little to none occurs in stems, etc. The parts of a typical leaf include the upper and lower epidermis, the mesophyll, the vascular bundle(s) (veins), and the stomates. The upper and lower epidermal cells do not have chloroplasts, thus photosynthesis does not occur there. They serve primarily as protection for the rest of the leaf. The stomates are holes which occur primarily in the lower epidermis and are for air exchange: they let CO2 in and O2 out. The vascular bundles or veins in a leaf are part of the plant's transportation system, moving water and nutrients around the plant as needed. The mesophyll cells have chloroplasts and this is where photosynthesis occurs.

[Chloroplast] As you hopefully recall, the parts of a chloroplast include the outer and inner membranes, intermembrane space, stroma, and thylakoids stacked in grana. The chlorophyll is built into the membranes of the thylakoids.

Chlorophyll looks green because it absorbs red and blue light, making these colors unavailable to be seen by our eyes. It is the green light which is NOT absorbed that finally reaches our eyes, making chlorophyll appear green. However, it is the energy from the red and blue light that are absorbed that is, thereby, able to be used to do photosynthesis. The green light we can see is not/cannot be absorbed by the plant, and thus cannot be used to do photosynthesis.

The overall chemical reaction involved in photosynthesis is: 6CO2 + 6H2O (+ light energy) --> C6H12O6 + 6O2. This is the source of the O2 we breathe, and thus, a significant factor in the concerns about deforestation.